Minimally Invasive Intramedullary Rod Fixation of Multiple Metacarpal Shaft Fractures

George W. Balfour, MD, PharmD

Valley Orthopedic Surgery Associates

ABSTRACT

Metacarpal shaft fractures tend to shorten and angulate. This tendency is accentuated with the fracture of multiple metacarpals. A variety of methods for treatment have been described. The purpose of this study is to present the results of treatment in patients with multiple metacarpal shaft fractures, treated in a minimally invasive manner, with an intramedullary rod device.

Keywords: metacarpal fracture, intramedullary rod fixation, minimally invasive surgery

The potential deformities of metacarpal shaft fractures are shortening, dorsal angulation, and malrotation. Of these, dorsal angulation is the most significant and deforming. These tendencies all become accentuated when more than one metacarpal is involved. Multiple fractures represent only about 0.6% of upper extremity fractures. Many single metacarpal fractures can be treated nonoperatively. When several metacarpals are fractured, there is a greater potential for deformity. These injuries are usually treated by surgical stabilization. Most methods of internal fixation involve fracture exposure, moderately extensive surgical incisions, and manipulation of the extensor tendons and the intrinsic muscles. Postoperative stiffness, unattractive scars, and prolonged rehabilitation are frequent consequences of open treatment.

Orbay and Touhami introduced an intramedullary device for fixation of small bone fractures (Hand Innovations). The principal advantage of this device is that it can be used as a minimally invasive technique. This article demonstrates that minimally invasive fixation in conjunction with early motion can lead to results as good as, or superior to, other techniques.

INDICATIONS/CONTRAINDICATIONS

The best candidates for this technique are simple transverse fractures or slightly oblique fractures. I do not recommend this method for long spiral oblique or highly comminuted fractures. In the ring metacarpal, one should check to be sure that there is, in fact, a medullary canal. There is an occasionalring metacarpal without one, and clearly, that prohibits the passage of an intramedullary device.

TECHNIQUE

Using a mini C-arm fluoroscopic machine and an 18-gauge hypodermic needle, locate the introduction site on the proximal end of the fractured metacarpal. Make a small 0.5-cm incision with a sharp narrow awl, and penetrate the proximal side cortex of the metacarpal shaft. This should be very near the proximal articular surface, but not through the joint surface. The manufacturer provides an awl with these devices, but I prefer a narrower, sharper, almost ice-pick–thin awl (item no. 275–563 bone awl; Jarit-Integra). I find such an instrument easier to control, and it permits easier penetration into the cortex. Once the awl is in the medullary canal as seen on the fluoroscope, the awl is removed and the rod introduced.

These rods are provided, mounted on a handle. They are flexible and easily contoured. Using fluoroscopy, the tip of the rod is advanced across the fracture line into the distal end of the metacarpal shaft. The rod is introduced and advanced by a twisting motion. However, excessive force can also easily bend the rod. It is wise to have backup rods available. Usually, 1 rod per metacarpal is sufficient. However, if there is some displacement or rotational tendency, a second rod can be introduced. One can use the same point of introduction and by rotating the rod achieve separation of the tips of the rod. Alternatively, you can introduce a second rod, if needed, from the opposite cortex, through a different entrance portal. The manufacturer supplies a locking device, which I have used only once and no longer utilize.

The locking device is a small tube with a spike on its leading end. The tube is slipped over the end of the rod after the handle has been cut off and the rod bent. Orbay and Touhami use it to catch the near cortex to supplement fixation. I found it difficult to use and too...
prominent below the skin. I do not feel it adds enough to
the fixation to justify the problems with its use.

Once the rod is placed in the various metacarpals,
the handle is cut off. The rod is bent over about 70 to
90 degrees and cut short, below the skin, with a me-
dium pin cutter. One can either cut the rod short well
below the skin, or, by using a needle holder, the rod
d end can be rotated, bent, and then rotated back to the
original position away from the extensor tendons. If
doing the latter, one should preplan the final location
of the distal end of the rod, so as not to create any
defor mity.

Because longitudinal rods provide only moderately
fair rotational stability, I always use buddy taping of ad-
ja cent digits, for supplemental control.

Although the radiographic appearance of the these
devices is similar to those of Kirschner wires, the flexi-
ibility and handling characteristics are quite different. I
find them more flexible and easier to mold. The affixed
handle makes manual insertion practical. There is no
similar way to insert a Kirschner wire. These observa-
tions, although difficult to quantify, are readily felt by
the surgeon.

REHABILITATION

Active motion exercises should be started at the earliest
opportunity, certainly within the first week after surgery.
No postsurgical splints were used in this group.

CLINICAL RESULTS

This is a series of 11 patients with multiple metacarpal
shaft fractures. I retrospectively reviewed my results in
these 11 patients. There were also 3 patients whose in-
jury required both the use of rods on 2 metacarpals and
other surgical techniques on other metacarpals. These 3
cases are not included in the reported series.

The average follow-up time was 129 days. The aver-
age time to rod removal was 93 days. Six patients had
essentially no stiffness at the first postoperative visit, at
1 week. The ability to touch the fingers to the midpalmar
crease and 80 degrees of metacarpal flexion was taken as
the absence of stiffness. Two patients had some stiffness,
which was resolved by the 1-month postoperative visit.
Three patients were somewhat stiff for more than 1
month, averaging 76 days. Ultimately, the stiffness did
resolve in all patients. None of the patients demonstrated

![FIGURE 1](image)

FIGURE 1. A and B, Preoperative radiographs. Fractures of ring and small finger metacarpals are demonstrated; note
dorsal angulation. This small angulation was not apparent on inspection of the hand. C and D, Postoperative reduction
films. The clinical deformity is resolved.
residual angular deformity. All but one patient was thought to have had a good or excellent result. That one patient developed some rotational displacement, noted on the first postoperative visit. This required a second procedure to correct, at which time a second rod was added. His final result was still good. However, I excluded him from the good or excellent group because it took 2 procedures to achieve that result.

CONCLUSIONS

I have found that this method of internal fixation of multiple metacarpal fractures is an excellent, easy, and minimally invasive technique in appropriately selected patients. There was only 1 complication. The restoration of function is rapid. The surgical scars are small: all less than 0.5 inch and cosmetically acceptable (Fig. 1).

REFERENCES

AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

AQ1 = Please provide location of author’s affiliation.

AQ2 = “Orbay” was changed to “Orbay and Touhami,” and Ref 4 (previously uncited) was inserted. Please check if correct.

AQ3 = Is this a company name? Please provide location.

AQ4 = Please check if zip code provided is correct.

AQ5 = Please provide manufacturer location.

AQ6 = Figure 1 was not cited and thus inserted here. Please check if placement here is appropriate.

AQ7 = Please check if proposed short title is ok.

AQ8 = References 5 and 6 were not cited. Please insert in the text where appropriate.

END OF AUTHOR QUERIES
Order

Author Reprints

Techniques in Hand & Upper Extremity Surgery

Author(s) Name
Title of Article
*Article # *Publication Mo/Yr ______
*Fields may be left blank if order is placed before article number and publication month are assigned.

Quantity of Reprints ___ $____
Covers (Optional) ___ $____
Shipping Cost $____
Reprint Color Cost $____
Tax $____
Total $____

Reprint Pricing
100 copies = $375.00
200 copies = $441.00
300 copies = $510.00
400 copies = $585.00
500 copies = $654.00

Covers
$108.00 for first 100 copies
$18.00 each add’l 100 copies

Tax
$5.00 per 100 for orders shipping within the U.S.
$20.00 per 100 for orders shipping outside the U.S.

Reprint Color Cost
($70.00/100 reprints)

You may have included color figures in your article. The costs to publish those will be invoiced separately. If your article contains color figures, use Rapid Ordering www.lww.com/periodicals/author-reprints.

Payment

MC VISA Discover American Express
Account # / / Exp. Date

Name
Address Dept/Rm
City State Zip Country
Telephone
Signature

Ship to

Name
Address Dept/Rm
City State Zip Country
Telephone

For Rapid Ordering go to: www.lww.com/periodicals/author-reprints

Use this form to order reprints. Publication fees, including color separation charges and page charges will be billed separately, if applicable.

Payment must be received before reprints can be shipped. Payment is accepted in the form of a check or credit card; purchase orders are accepted for orders billed to a U.S. address.

Prices are subject to change without notice.

Quantities over 500 copies: contact our Pharma Solutions Department at 410.528.4077

Outside the U.S. call 4420.7981.0700

MAIL your order to: Lippincott Williams & Wilkins Author Reprints Dept. 351 W. Camden St. Baltimore, MD 21201

FAX: 410.528.4434

For questions regarding reprints or publication fees, E-MAIL: reprints@lww.com

OR PHONE: 1.800.341.2258