Reconstruction of the Anterior Cruciate Ligament in the Skeletally Immature Patient
Mininder S. Kocher, MD, MPH

Anterior cruciate ligament (ACL) injuries in skeletally immature patients are being observed with increased frequency. The management of these injuries is controversial. Nonreconstructive treatment of complete tears typically results in recurrent functional instability with risk of injury to meniscal and articular cartilage. A variety of reconstructive techniques have been used, including physeal sparing, partial transphyseal, and transphyseal methods using various grafts. Conventional adult ACL reconstruction techniques risk potential iatrogenic growth disturbance because of physeal violation. Growth disturbances after ACL reconstruction in skeletally immature patients have been reported. In this review, I discuss our approach to ACL injuries in the skeletally immature patient. Specifically, surgical techniques in the prepubescent patient and in the adolescent patient are detailed.

Oper Tech Orthop 15:289-307 © 2005 Elsevier Inc. All rights reserved.

KEYWORDS anterior cruciate ligament, children, growth plates

In this review, I discuss our approach to anterior cruciate ligament (ACL) reconstruction in the skeletally immature patient based on physiological age (Fig. 1). In prepubescent patients, we perform a physeal-sparing, combined intra-articular and extra-articular reconstruction using autogenous iliotibial band. In adolescent patients with significant growth remaining, we perform transphyseal ACL reconstruction with autogenous hamstring tendons with fixation away from the physes. In older adolescent patients approaching skeletal maturity, we perform conventional adult ACL reconstruction with interference screw fixation using either autogenous central third patellar tendon or autogenous hamstrings.

History of the Technique

Intrasubstance ACL injuries in children and adolescents were once considered rare, with tibial eminence avulsion fractures considered the pediatric ACL injury equivalent.1-4 However, intrasubstance ACL injuries in children and adolescents are being observed with increased frequency and have received increased attention. ACL injury has been reported in 10% to 65% of pediatric knees with acute traumatic hemarthroses in series ranging from 35 to 138 patients.5-10

Controversy exists regarding the management of ACL injuries in patients with open physes. Nonoperative management of partial tears may be successful in some patients.1-11 However, nonoperative management of complete tears in skeletally immature patients generally has a poor prognosis with recurrent instability, leading to further meniscal and chondral injury, which have implications in terms of development of degenerative joint disease.12-16 Graft and coworkers, Mizuta and coworkers, and Janashvly and coworkers have reported instability symptoms, subsequent meniscal tears, decreased activity level, and need for ACL reconstruction in the majority of skeletally immature patients treated nonoperatively in series of 8, 18, and 23 patients, respectively.13,14,17 Similarly, when comparing the results of operative versus nonoperative management of complete ACL injuries in adolescents, McCarroll and coworkers and Pressman and coworkers found that those managed by ACL reconstruction had less instability, higher activity and return to sport levels, and lower rates of subsequent re-injury and meniscal tears.15,18

Conventional surgical reconstruction techniques risk potential iatrogenic growth disturbance caused by physeal violation. Cases of growth disturbance have been reported in animal models19-21 and clinical series.22-24 Animal models have demonstrated mixed results regarding growth disturbances from soft tissue grafts across the physeal. In a canine model with iliotibial band grafts through 5/32-inch tunnels, Stadlcmeier and coworkers found no evidence of growth arrest in the 4 animals with soft tissue graft across the physeal, whereas the 4 animals with drill holes and no graft demon-
also was associated with fixation across the distal femoral physis. Kocher and coworkers reported an additional 15 cases of growth disturbances gleaned from a questionnaire of expert experience, including 8 cases of distal femoral valgus deformity with an arrest of the lateral distal femoral physis, 3 cases of tibial recurvatum with an arrest of the tibial tubercle apophysis, 2 cases of genu valgum without arrest caused by a lateral extra-articular tether, and 2 cases of leg length discrepancy (1 shortening and 1 overgrowth). 24 Associated factors included fixation hardware across the lateral distal femoral physis in 3 cases, bone plugs of a patellar tendon graft across the distal femoral physis in 3 cases, large (12-mm) tunnels in 2 cases, lateral extra-articular tenodesis in 2 cases, fixation hardware across the tibial tubercle apophysis in 2 cases, of the over-the-top femoral position in 1 case, and suturing near the tibial tubercle apophysis in 1 case.

Surgical techniques to address ACL insufficiency in skeletally immature patients include primary repair, extra-articular tenodesis, transphyseal reconstruction, partial transphyseal reconstruction, and physeal sparing reconstruction. Primary ligament repair 26,27 and extra-articular tenodesis 13,15 have had poor results in children and adolescents, similar to adults. Transphyseal reconstructions with tunnels that violate both the distal femoral and proximal tibial physis have been performed with hamstrings autograft, patellar tendon autograft, and allograft tissue. 12,15,29-37 Partial transphyseal reconstructions violate only one physis with a tunnel through the proximal tibial physis and over-the-top positioning on the femur or a tunnel through the distal femoral physis with an epiphyseal tunnel in the tibia. 38-40 A variety of physeal-sparing reconstructions have been described to avoid tunnels across either the distal femoral or proximal tibial physis. 7,11-47

Indications and Contraindications

All skeletally immature patients are not the same. Some have a tremendous amount of growth remaining, whereas others essentially have finished growing. The consequences of growth disturbance in the former group would be severe, requiring osteotomy and/or limb lengthening. However, the consequences of growth disturbance in the latter group would be minimal. When treating a skeletally immature athlete with an ACL injury, it is important to know their chronological age, their skeletal age, and their physiological age. Skeletal age can be determined from an anteroposterior radiograph of the left hand and wrist per the atlas of Greulich and Pyle. 48 Alternatively, skeletal age can be estimated from knee radiographs per the atlas of Pyle and Hoerr. 49 Physiological age is established using the Tanner staging system (Table 1). 50 In the office, the patient can be informally staged by questioning. In the operating room, after the induction of anesthesia, Tanner staging can be confirmed.

The vast majority of ACL injuries in skeletally immature patients occur in adolescents. The management of these injuries in preadolescent children is particularly vexing, given the poor prognosis with nonoperative management, the sub-
Table 1 Tanner Staging Classification of Secondary Sexual Characteristics

<table>
<thead>
<tr>
<th>Tanner Stage</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 (prepubertal)</td>
<td>5-6 cm/yr Testes <4 mL or <2.5 cm No pubic hair</td>
<td>5-6 cm/yr No breast development No pubic hair</td>
</tr>
<tr>
<td>Growth</td>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td>5-6 cm/yr Testes 4 mL or 2.5-3.2 cm Minimal pubic hair at base of penis</td>
<td>7-8 cm/yr Breast buds Minimal pubic hair on labia</td>
</tr>
<tr>
<td>Growth</td>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td>7-8 cm/yr Testes 12 mL or 3.6 cm Pubic hair over pubis Voice changes Muscle mass increases</td>
<td>8 cm/yr Elevation of breast areolae enlarge Pubic hair of mons pubis Axillary hair Acne</td>
</tr>
<tr>
<td>Growth</td>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td>10 cm/yr Testes 4.1-4.5 cm Pubic hair as adult Axillary hair Acne</td>
<td>7 cm/yr Areolae enlarge Pubic hair as adult</td>
</tr>
<tr>
<td>Growth</td>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Stage 5</td>
<td>No growth Testes as adult Pubic hair as adult Facial hair as adult Mature physique</td>
<td>No growth Adult breast contour Pubic hair as adult</td>
</tr>
<tr>
<td>Growth</td>
<td>Development</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>Peak height velocity: 13.5 years</td>
<td>Adrenarche: 6-8 years Menarche 12.7 years Peak height velocity: 11.5 years</td>
</tr>
</tbody>
</table>
injury to the meniscal and articular cartilage is high, the risk and consequences of growth disturbance from ACL reconstruction are less, and our transphyseal technique is an anatomic reconstruction. In these patients, we perform transphyseal ACL reconstruction with interference screw fixation using either autogenous central third patellar tendon or autogenous hamstrings.

In skeletally immature patients as in adult patients, acute ACL reconstruction is not performed within the first 3 weeks after injury to minimize the risk of arthropathy. Preoperative rehabilitation is performed to regain range of motion, decrease swelling, and resolve the reflex inhibition of the quadriceps. ACL reconstruction may be staged in some cases if there is a displaced, bucket-handle tear of the meniscus that requires extensive repair to protect the meniscal repair from the early mobilization prescribed by ACL reconstruction. Skeletally immature patients must be emotionally mature enough to actively participate in the extensive rehabilitation required after ACL reconstruction.

Surgical Technique

In older adolescent patients who are approaching skeletal maturity who have a complete ACL tear, we perform conventional adult ACL reconstruction with interference screw fixation using either autogenous central third patellar tendon or autogenous hamstrings. This is a standard one-incision, arthroscopically assisted technique that is covered elsewhere in the text and will not be further detailed in this chapter.

Prepubescent Patients: Physeal-Sparing, Combined Intra/Extra-articular Reconstruction With Autogenous Iliotibial Band

In prepubescent patients, we perform a physeal-sparing, combined intra-articular and extra-articular reconstruction utilizing autogenous iliotibial band. The procedure is performed under general anesthesia as an overnight observation procedure. Local anesthesia with sedation may not be reliable in prepubescent children with the potential for a pradaloxal effect of sedation. The child is positioned supine on the operating table with a pneumatic tourniquet about the upper thigh, which is used routinely. Examination under anesthesia is performed to confirm ACL insufficiency.

First, the iliotibial band graft is obtained. An incision of approximately 6 cm is made obliquely from the lateral joint line to the superior border of the iliotibial band (Fig. 2A). Proximally, the iliotibial band is separated from subcutaneous tissue using an anterior elevator under the skin of the lateral thigh. The anterior and posterior borders of the iliotibial band are incised and the incisions carried proximally under the skin using curved meniscotomes (Fig. 2A). The iliotibial band is detached proximally under the skin using a curved meniscotome or an open tendon stripper. Alternatively, a counter-incision can be made at the upper thigh to release the tendon. The iliotibial band is left attached distally at Gerdy's tubercle. Dissection is performed distally to separate the iliotibial band from the joint capsule and from the lateral patellar retinaculum (Fig. 2B). The free proximal end of the iliotibial band is then tubularized with a #5 Ethibond whip stitch.

Arthroscopy of the knee is then performed through standard anterolateral viewing and anteromedial working portals. Management of meniscal injury or chondral injury is performed if present. The ACL remnant is excised. The over-the-top position on the femur and the over-the-top position under the intermeniscal ligament are identified. Minimal notchplasty is performed to avoid iatrogenic injury to the perichondrial ring of the distal femoral physis which is in very close proximity to the over-the-top position. The free end of the iliotibial band graft is brought through the over-the-top position using a full-length clamp (Fig. 2C) or a 2-incision rear-entry guide (Fig. 3B) and out the anteromedial portal (Figs. 2D and 3C).

A second incision of approximately 4.5 cm is made over the proximal medial tibia in the region of the pes anserinus insertion. Dissection is carried through the subcutaneous tissue to the periosteum. A curved clamp is placed from this incision into the joint under the intermeniscal ligament (Fig. 2E). A small groove is made in the anteromedial proximal tibial epiphyseal under the intermeniscal ligament using a curved rat-tail rasp to bring the tibial graft placement more posterior. The free end of the graft is then brought through the joint (Fig. 2F), under the intermeniscal ligament in the anteromedial epiphysial groove, and out the medial tibial incision (Fig. 2G). The graft is fixed on the femoral side through the lateral incision with the knee at 90° flexion and 15° external rotation using mattress sutures to the lateral femoral condyle at the insertion of the lateral intermuscular septum to effect an extra-articular reconstruction (Fig. 2H). The tibial side is then fixed through the medial incision with the knee flexed 20° and tension applied to the graft. A periosteal incision is made distal to the proximal tibial physse as checked with fluoroscopic imaging. A trough is made in the proximal tibial medial metaphysial cortex and the graft is sutured to the periosteum at the rough margins with mattress sutures (Fig. 3D).

Postoperatively, the patient is maintained touch-down weight bearing for 6 weeks. Range of motion is limited from 0 to 90° for the first 2 weeks, followed by progressive full range of motion. A continuous passive motion (CPM) from 0 to 90° and cryotherapy are used for 2 weeks postoperatively. A protective postoperative brace is used for 6 weeks postoperatively.

Adolescent Patients with Growth Remaining: Transphyseal Reconstruction with Autogenous Hamstrings With Metaphyseal Fixation

In adolescents with growth remaining, we perform transphyseal ACL reconstruction with autogenous hamstrings tendons with metaphyseal fixation away from the physes. This is
Figure 2. Physeal-sparing, combined intra-articular and extra-articular reconstruction using autogenous iliotibial band for prepubescent. (A) The graft is harvested through the lateral incision. (B) The graft is left attached to Gerdy's tubercle distally. (C) and (D) The graft is brought through the knee in the over-the-top position using a full length clamp. (E) The graft is brought under the intermeniscal ligament. A groove can be made in the epiphysis in this region with a rasp. (F) Intra-articular reconstruction component. (G) The graft is brought out the medial tibial incision and fixed here to a trough in the periosteum. (H) Extra-articular reconstruction component.
a fairly standard one-incision, arthroscopically assisted technique utilizing a 4-stranded gracilis/semitendinosis graft with endobutton fixation on the femur. On the tibial side, the graft is either fixed with a soft-tissue interference screw if there is adequate tunnel distance (at least 30 mm) below the physis to ensure metaphyseal placement of the screw or with a post and spiked washer.

The procedure is performed under general anesthesia as an overnight observation procedure. Local anesthesia with sedation may be performed in the emotionally mature adolescent children. The patient is positioned supine on the operating table with a pneumatic tourniquet about the upper thigh, which is not used routinely. Examination under anesthesia is performed to confirm ACL insufficiency.

First, the hamstrings tendons are harvested. If the diagnosis is in doubt, arthroscopy can be performed first to confirm ACL tear. A 4-cm incision is made over the palpable pes anserinus tendons on the medial side of the upper tibia (Fig. 4A). Dissection is carried through skin to the sartorius fascia. Care is taken to protect superficial sensory nerves. The sartorius tendon is incised longitudinally and the gracilis and semitendinosis tendons are identified. The tendons are dissected free distally and their free ends whip-stitched with #2 or #5 ethibond suture. They are dissected proximally using sharp and blunt dissection. Fibrous bands to the medial head of gastrocnemius should be sought and released. A closed tendon stripper is used to dissect the tendons free proximally. Alternatively, the tendons can be left attached distally, and an open tendon stripper used to release the tendons proximally. The tendons are taken to the back table, where excess muscle is removed and the remaining ends are whip-stitched with #2 or #5 ethibond suture. The tendons are folded over a closed loop endobutton. The graft diameter is sized and the graft is placed under tension.

Arthroscopy of the knee is then performed through standard anterolateral viewing and anteromedial working portals. Management of meniscal injury or chondral injury is performed if present. The ACL remnant is excised. The over-the-top position on the femur is identified. Minimal notchplasty is performed to avoid iatrogenic injury to the peri-chondrial ring of the distal femoral physis, which is in very close proximity to the over-the-top position.32

A tibial tunnel guide (set at 55°) is used through the anteromedial portal (Fig. 4B). A guidewire is drilled through the
hamstrings harvest incision into the posterior aspect of the ACL tibial footprint. The guidewire entry point on the tibia should be kept medial to avoid injury to the tibial tubercle apophysis. The guidewire is reamed with the appropriate diameter reamer. Excess soft tissue at the tibial tunnel is excised to avoid arthrofibrosis. The transtibial over-the-top guide of the appropriate offset to ensure a 1 mm or 2 mm back wall is used to pass the femoral guide pin (Fig. 4C). The femoral guide pin is overdrilled with the endobutton reamer. Both are removed to use the depth gauge to measure the femoral tunnel length. The guide pin is replaced and brought through the distal lateral thigh. The femur is reamed to the appropriate depth (femoral tunnel length−endobutton length + 6–7 mm to flip the endobutton).

The #5 ethibond sutures on the endobutton are placed in slot of the guidewire and pulled through the tibial tunnel, through the femoral tunnel, and out the lateral thigh. These are then pulled to bring the endobutton and graft through the tibial tunnel and into the femoral tunnel. One set of sutures is used to "lead" the endobutton, while the other set of sutures is used to "follow." Once the graft is fully seated in the femoral tunnel, the "follow" sutures are pulled to flip the endobutton (Fig. 4D). The flip can be palpated in the thigh and tension is applied to the graft to ensure no graft slippage. The knee is then extended to ensure no graft impingement. The knee is then cycled approximately ten times with tension applied to the graft. The graft is fixed on the tibial side with the knee in 20 to 30° of flexion, tension applied to the graft, and a posterior force placed on the tibia. On the tibial side, the graft is either fixed with a soft-tissue interference screw if there is adequate tunnel distance (at least 30 mm) below the physis to ensure metaphyseal placement of the screw or with a post and spiked washer. Fluoroscopy can be used to ensure that the fixation is away from the physis. Postoperative radiographs are shown in Fig. 5.

Postoperatively, the patient is maintained touch-down weight bearing for 2 weeks. Range of motion is limited from 0 to 90° for the first 2 weeks, followed by progressive full range of motion. A CPM from 0 to 90° and cryotherapy are used for 2 weeks postoperatively. A protective postoperative brace is used for 6 weeks postoperatively.

Figure 4 Transphyseal reconstruction with autogenous hamstrings for adolescents with growth remaining. (A) The gracilis and semitendinosus tendons are harvested through an incision over the proximal medial tibia. (B) The tibial guide is used to drill the tibial tunnel. (C) The transtibial over-the-top offset guide is used to drill the femoral tunnel. (D) Hamstrings graft after fixation.

Technical Alternatives and Pitfalls

Transphyseal reconstruction, partial transphyseal reconstruction, and physesal sparing reconstruction techniques have been described to address ACL insufficiency in skeletally immature patients. In prepubescent patients, physesal sparing techniques have been described that use hamstrings tendons under the intermeniscal ligament and over-the-top on the femur, through all-epiphyseal femoral and tibial tunnels, and with a femoral epiphyseal staple.7,41–47

In adolescent patients with growth remaining, transphyseal reconstructions have been performed with hamstrings autograft, patellar tendon autograft, and allograft tissue.12,15,28,37 In
addition, partial transphyseal reconstructions have been described with a tunnel through the proximal tibial physis and over-the-top positioning on the femur or a tunnel through the distal femoral physis with an epiphyseal tunnel in the tibia.38-40,53

Pitfalls to avoid with the physeal-sparing iliotibial band reconstruction in pubescent patients include harvesting a short graft insufficient to reach the medial tibial incision, difficulty passing the graft through the posterior joint capsule, and difficulty passing the graft under the intermeniscal ligament. Pitfalls to avoid with the transphyseal hamstrings reconstruction in adolescents with growth remaining include amputation of the hamstring grafts, poor tunnel placement, and graft impingement.

On the basis of the 15 cases of growth disturbance after ACL reconstruction in skeletally immature patients that we reported and on anatomical studies in cadaveric pediatric knees, we recommend careful attention to technical details during ACL reconstruction in skeletally immature patients, particularly the avoidance of fixation hardware across the lateral distal femoral epiphyseal plate.24,25 Care should also be taken to avoid injury to the vulnerable tibial tubercle apophysis. Given the cases of growth disturbances associated with transphyseal placement of patellar tendon graft bone blocks, we recommend the use of soft tissue grafts. Large tunnels should likely be avoided as likelihood of arrest is associated with greater violation of epiphyseal plate cross-sectional area. The 2 cases of genu valgum without arrest associated with lateral extra-articular tenodesis raise additional concerns about the effect of tension on physeal growth. Finally, care should be taken to avoid dissection or notching around the posterolateral aspect of the physis during over-the-top nonphyseal femoral placement to avoid potential injury to the perichondrial ring and subsequent deformity.

Rehabilitation

Rehabilitation after ACL reconstruction in skeletally immature patients is essential to ensure a good outcome, allow return to sports, and avoid reinjury. Rehabilitation in pubescent children can be challenging. A therapist who is used to working with children and can make therapy interesting and fun is very helpful. Compliance with therapy and restrictions should be carefully monitored.

After physeal-sparing iliotibial band reconstruction in pubescent patients, we restrict full weight-bearing for 6 weeks to allow graft healing. After transphyseal hamstring reconstruction in adolescents with growth remaining, we restrict full weight-bearing for 2 weeks. A CPM machine is used for 2 weeks postoperatively. A postoperative brace is used for 6 weeks postoperatively.

Progressive rehabilitation consists of range-of-motion exercises, patellar mobilization, electrical stimulation, pool therapy if available, proprioception exercises, and closed chain strengthening, during the 3 months postoperatively, followed by straight-line jogging, plyometric exercises, sport cord exercises, and sport-specific exercises.

Return to full activity, including cutting sports, is usually allowed at 6 months postoperatively. A functional knee brace is used routinely during cutting and pivoting activities for the first 2 years after return to sports.

Outcomes and Future Directions

We have reviewed the results of physeal-sparing iliotibial band reconstruction in pubescent patients in a preliminary series of 8 patients. More recently, we have reviewed the minimum 2-year results in 44 pubescent patients.
Between 1980 and 2002, 44 skeletally immature preadolescent children who were Tanner stage 1 or 2 (mean chronological age, 10.3 years old; range, 3.6-14.0 years old) underwent physeal sparing combined intra-articular and extra-articular ACL reconstruction using autogenous iliotibial band. Twenty-four patients had additional meniscal surgery. Functional outcome, graft survival, radiographic outcome, and growth disturbance were evaluated at a mean of 5.3 years (range, 2.0-15.1 years) after surgery. Two patients underwent revision ACL reconstruction for graft failure at 4.7 and 8.3 years after initial surgery (revision rate: 4.5%). In the remaining 42 patients, the mean International Knee Documentation (IKDC) subjective knee score was 96.7 ± 6.0 (range, 88.5-100) and the mean Lysholm knee score was 95.7 ± 6.7 (range, 74-100). Per IKDC criteria, Lachman examination was normal in 23 patients, nearly normal in 18 patients, and abnormal in 1 patient. Pivot-shift examination was normal in 31 patients and nearly normal in 11 patients. Four patients who underwent concurrent meniscus repair had repeat arthroscopic meniscal repair or partial meniscectomy. Mean growth in total height from the time of surgery to final follow-up was 21.5 cm (range, 9.5 to 118.5 cm). There were no cases of significant angular deformity measured radiographically or leg length discrepancy measured clinically. Thus, physeal sparing combined intra-articular and extra-articular ACL reconstruction using iliotibial band in preadolescent skeletally immature patients appears to provide for excellent functional outcome with a low revision rate and a minimal risk of growth disturbance.

References
and gradual tendons, suprapetaphyseal femoral and tibial fixation.
Arthroscopy 20:447-449, 2004
37. Edwards PH, Grama WA: Anterior cruciate ligament reconstruction in
the immature athlete: Long-term results of intra-articular reconstruction.
38. Andrew M, Noyes FR, Barber-Westin SD: Anterior cruciate ligament
allograft reconstruction in the skeletally immature athlete. Am J Sports
40. Guazzoni V, Falciglia F, Stanitski CL: Preoperative evaluation and an-
terior cruciate ligament reconstruction technique for skeletally immatu-
Arthroscopy 7:350-357, 1991
in the young patient without violation of the epiphysial plate. Arthro-
scopy 15:792-795, 1999
44. Fairer AW, Drez D, Cooper JL: Anterior cruciate ligament injuries in
45. Anderson AJ: Transphysephyseal replacement of the anterior cruciate
ligament in skeletally immature patients: A preliminary report. J Bone
46. Guazzoni V, Falciglia F, Stanitski CL: Physes-sparing intraarticular
anterior cruciate ligament reconstruction in preadolescents. Am J
47. Micheli LJ, Rask B, Gerberg L: Anterior cruciate ligament reconstruc-
48. Greulich WW, Pyle IL: Radiographic Atlas of Skeletal Development of
the Hand and Wrist (ed 2). Stanford, Stanford University Press, 1959
Knee. Springfield, IL, Charles Thomas, 1969
50. Tanner JM, Whitehouse RH: Clinical longitudinal standards for height,
weight, height velocity, and stages of puberty. Arch Dis Child 51:170-
179, 1976
51. Macnab DL: Lateral substitution reconstruction in proceedings and
reports of universities, colleges, councils, and associations. J Bone Joint
Surg Br 58:142, 1976
52. Behr CT, Potter HG, Faletta GA Jr: The relationship of the femoral
origin of the anterior cruciate ligament and the distal femoral physseal
anterior cruciate ligament disruptions in the skeletally immature child.
Arthroscopy 13:627-634, 1997
reconstruction in skeletally immature knees: an anatomi
cal study. Am J
Orthop 34:285-290, 2005